Determination of Metabolic pathways and PPI network of Sarigol in Response to Osmotic stress: An in silico study
Abstract
Keywords
Full Text:
PDFReferences
Hsieh T-H, Lee J-T, Yang P-T, Chiu L-H, Charng Y-y, Wang Y-C, et al. Heterology expression of the ArabidopsisC-repeat/dehydration response element binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. PLANT PHYSIOL. 2002;129(3):1086-94.
Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. PLANTA. 2003;218(1):1-14.
Wang W, Vinocur B, Shoseyov O, Altman A, editors. Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. IV International Symposium on In Vitro Culture and Horticultural Breeding 560; 2000.
Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. PLANT PHYSIOL. 2002;130(4):2129-41.
Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. PLANT PHYSIOL. 2004;134(4):1683-96.
Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH. Proteomics Uncovers a Role for Redox in Drought Tolerance in Wheat §. J PROTEOME RES. 2007;6(4):1451-60.
Rabbani M, editor Monitoring expression profiles of rice (Oryza sativa L.) genes under abiotic stresses using cDNA Microarray Analysis. International Conference on Biotechnology for Salinity and Drought Tolerance in Plants; 2005.
Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Current opinion in plant biology. 2003;6(5):410-7.
Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current opinion in biotechnology. 2006;17(2):113-22.
Zhang JZ, Creelman RA, Zhu J-K. From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant physiology. 2004;135(2):615-21.
Abreu IA, Farinha AP, Negrão S, Gonçalves N, Fonseca C, Rodrigues M, et al. Coping with abiotic stress: proteome changes for crop improvement. J PROTEOMICS. 2013;93:145-68.
Gong F, Hu X, Wang W. Proteomic analysis of crop plants under abiotic stress conditions: where to focus our research? Frontiers in plant science. 2015;6.
Gharelo Shokri R, Farajzadeh D, Bandehagh A, Tourchi M. Canola 2-dimensional proteom profile under osmotic stress and inoculation with Pseudomonas fluorescens FY32. Plant Cell Biotechnology and Molecular Biology 2016;17(5&6):257-66.
Banaei-Asl F, Bandehagh A, Uliaei ED, Farajzadeh D, Sakata K, Mustafa G, et al. Proteomic analysis of canola root inoculated with bacteria under salt stress. Journal of proteomics. 2015;124:88-111.
Bandehagh A, Salekdeh GH, Toorchi M, Mohammadi A, Komatsu S. Comparative proteomic analysis of canola leaves under salinity stress. Proteomics. 2011;11(10):1965-75.
Mittler R. Oxidative stress, antioxidants and stress tolerance. TRENDS PLANT SCI. 2002;7(9):405-10.
Banaei-Asl F, Farajzadeh D, Bandehagh A, Komatsu S. Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2016.
Chinnusamy V, Jagendorf A, Zhu J-K. Understanding and improving salt tolerance in plants. CROP SCI. 2005;45(2):437-48.
Ford KL, Cassin A, Bacic AF. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Frontiers in plant science. 2011;2:44.
Jiang Y, Yang B, Harris NS, Deyholos MK. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J EXP BOT. 2007;58(13):3591-607.
Mohammadi PP, Moieni A, Komatsu S. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. AMINO ACIDS. 2012;43(5):2137-52.
Salekdeh GH, Siopongco J, Wade L, Ghareyazie B, Bennett J. A proteomic approach to analyzing drought-and salt-responsiveness in rice. FIELD CROP RES. 2002;76(2):199-219.
Sors T, Ellis D, Salt D. Selenium uptake, translocation, assimilation and metabolic fate in plants. PHOTOSYNTH RES. 2005;86(3):373-89.
Zagorchev L, Seal CE, Kranner I, Odjakova M. A central role for thiols in plant tolerance to abiotic stress. INT J MOL SCI. 2013;14(4):7405-32.
Cabreiro F, Picot CR, Friguet B, Petropoulos I. Methionine sulfoxide reductases. ANN NY ACAD SCI. 2006;1067(1):37-44.
Harms K, Von Ballmoos P, Brunold C, Höfgen R, Hesse H. Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. The Plant Journal. 2000;22(4):335-43.
Tabe L, Wirtz M, Molvig L, Droux M, Hell R. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume. J EXP BOT. 2010;61(3):721-33.
Wirtz M, Hell R. Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J PLANT PHYSIOL. 2006;163(3):273-86.
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry. 2010;48(12):909-30.
Meyer AJ, Hell R. Glutathione homeostasis and redox-regulation by sulfhydryl groups. PHOTOSYNTH RES. 2005;86(3):435-57.
Ashraf M, Harris P. Photosynthesis under stressful environments: an overview. PHOTOSYNTHETICA. 2013;51(2):163-90.
Foyer CH, Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. PLANT PHYSIOL. 2011;155(1):93-100.