DEN: an R-Bioconductor based package to extract active sub-networks from human interaction map by integrating gene-expression data

Sanket Shashikant Desai


Living cells are complex, dynamic, self-regulatory, interactive systems, showing differential states across time and space. Complexity of cellular systems is highlighted with the multi-layered regulatory mechanisms involving the interactions between bio-molecules (such as DNA, RNA, mi-RNA and proteins). These interactions are analyzed in the form of static networks. Likewise, number of experimental techniques like microarray, RNASeq allow quantification of cellular dynamics and aid in discerning differential gene expression across diverse conditions. Computational biology is in need of methods for integration of static networks and gene expression data, since it provides interesting insights into the dynamics of biological systems. DEN is an R/Bioconductor based package designed to assemble different types of human bio-molecular interactions as a complete interactome and contains functions to extract dynamic active networks by integration of gene expression data.


Active sub-network;Gene expression;Differential networks;R;Bioconductor

Full Text:



Liang H, Li W. MicroRNA regulation of human protein protein interaction network. RNA. 2007;13(9):1402-1408.

Martinez N, Walhout A. The interplay between transcription factors and microRNAs in genome-scale regulatory networks. BioEssays. 2009;31(4):435-445.

Mammoto A, Mammoto T, Ingber D. Mechanosensitive mechanisms in transcriptional regulation. Journal of Cell Science. 2012;125(13):3061-3073.

DP B. MicroRNAs: genomics, biogenesis, mechanism, and function. - PubMed - NCBI [Internet]. 2015 [cited 2 May 2015]. Available from:

Hwang H, Mendell J. MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer [Internet]. 2006 [cited 2 May 2015];94(6):776. Available from:

Arora S, Rana R, Chhabra A, Jaiswal A, Rani V. miRNA–transcription factor interactions: a combinatorial regulation of gene expression. Mol Genet Genomics. 2013;288(3-4):77-87.

Barabási A, Oltvai Z. Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004;5(2):101-113.

Chen C, Ho A, Huang H, Juan H, Huang H. Dissecting the Human Protein-Protein Interaction Network via Phylogenetic Decomposition. Scientific Reports. 2014;4:7153.

Aijo T, Butty V, Chen Z, Salo V, Tripathi S, Burge C et al. Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation. Bioinformatics. 2014;30(12):i113-i120.

Tornow S, Mewes H. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Research. 2003;31(21):6283-6289.

Li M, Wu X, Wang J, Pan Y. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinformatics. 2012;13(1):109.

Lopes T, Schaefer M, Shoemaker J, Matsuoka Y, Fontaine J, Neumann G et al. Tissue-specific subnetworks and characteristics of publicly available human protein interaction databases. Bioinformatics. 2011;27(17):2414-2421.

Kong W, Zhang J, Mou X, Yang Y. Integrating Gene Expression and Protein Interaction Data for Signaling Pathway Prediction of Alzheimer’s Disease. Computational and Mathematical Methods in Medicine. 2014;2014:1-7.

Qiu Y, Zhang S, Zhang X, Chen L. Detecting disease associated modules and prioritizing active genes based on high throughput data. BMC Bioinformatics. 2010;11(1):26.

Gaire R, Smith L, Humbert P, Bailey J, Stuckey P, Haviv I. Discovery and analysis of consistent active sub-networks in cancers. BMC Bioinformatics. 2013;14(Suppl 2):S7.

Wu C, Zhu J, Zhang X. Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes. BMC Bioinformatics. 2012;13(1):182.

Lee S, Chan C, Chen T, Yang C, Huang K, Tsai C et al. POINeT: protein interactome with sub-network analysis and hub prioritization. BMC Bioinformatics. 2009;10(1):114.

Lemetre C, Zhang Q, Zhang Z. SubNet: a Java application for subnetwork extraction. Bioinformatics. 2013;29(22):2958-2958. R: The R Project for Statistical Computing [Internet]. 2015 [cited 2 May 2015]. Available from: Bioconductor - Home [Internet]. 2015 [cited 2 May 2015]. Available from:

Ritchie M, Phipson B, Wu D, Hu Y, Law C, Shi W et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43(7):e47-e47.

Castro M, Wang X, Fletcher M, Meyer K, Markowetz F. RedeR: R/Bioconductor package for representing modular structures, nested networks and multiple levels of hierarchical associations. Genome Biol.


Beisser D, Klau G, Dandekar T, Muller T, Dittrich M. BioNet: an R-Package for the functional analysis of biological networks. Bioinformatics. 2010;26(8):1129-1130.

Wang X, Terfve C, Rose J, Markowetz F. HTSanalyzeR: an R/Bioconductor package for integrated network analysis of high-throughput screens. Bioinformatics. 2011;27(6):879-880.

Bar-Joseph Z, Gerber G, Lee T, Rinaldi N, Yoo J, Robert F et al. Computational discovery of gene modules and regulatory networks. Nat Biotechnol. 2003;21(11):1337-1342.

Gao S, Wang X. Identification of highly synchronized subnetworks from gene expression data. BMC Bioinformatics. 2013;14(Suppl 9):S5.

Berger S, Posner J, Ma'ayan A. Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases. BMC Bioinformatics. 2007;8(1):372.

Keshava Prasad T, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S et al. Human Protein Reference Database--2009 update. Nucleic Acids Research. 2009;37(Database):D767-D772.

Bovolenta L, Acencio M, Lemke N. HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics. 2012;13(1):405.

Hsu S, Tseng Y, Shrestha S, Lin Y, Khaleel A, Chou C et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Research. 2013;42(D1):D78-D85. UCINET DL Format [Internet]. 2015 [cited 2 May 2015]. Available from:

Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal, Complex Systems. 2006;1695(5):1-9.

Gautier L, Cope L, Bolstad B, Irizarry R. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307-315.

Carlson M. Bioconductor - hgu133a2.db [Internet]. 2015 [cited 2 May 2015]. Available from:

Loh K, Ang L, Zhang J, Kumar V, Ang J, Auyeong J et al. Efficient Endoderm Induction from Human Pluripotent Stem Cells by Logically Directing Signals Controlling Lineage Bifurcations. Cell Stem Cell. 2014;14(2):237-252.

Edgar R, Domrachev M, Lash A. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research. 2002;30(1):207-210.

Gregory Alvord W, Roayaei J, Quinones O, Schneider K. A microarray analysis for differential gene expression in the soybean genome using Bioconductor and R. Briefings in Bioinformatics. 2007;8(6):415-431.

Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M et al. GeneCards Version 3: the human gene integrator. Database. 2010;2010(0):baq020-baq020.

Smoot M, Ono K, Ruscheinski J, Wang P, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2010;27(3):431-432.