Molecular docking studies towards development of novel Gly-Phe analogs for potential inhibition of Cathepsin C (dipeptidyl peptidase I)

Umesh Kalathiya, M. Padariya, M. Jewginski, M. Baginski

Abstract


Cathepsin C is a cysteine protease required for activation of various pro-inflammatory serine proteases and, essentially, is of interest as a therapeutic target. Cathepsin C coordinate system was employed as a model to study the interaction of some already available inhibitors of Cathepsin C. Compounds containing Gly-Phe fragment with functional groups at its ends were designed by knowledge based approach. Using AutoDock and Discovery Studio Client 3.1 software packages, binding energy of different conformations and ten scoring functions (LigScore1, LigScore2, PLP1, PLP2, JAIN, PMF, PMF04, LUDI_1, LUDI_2 and LUDI_3) were calculated for newly designed compounds. These docking studies revealed favorable energy scores which also helps to understand interaction of ligands with enzyme.

Full Text:

PDF

References


M. J. McGuire, P. E. Lipsky and D. L. Thiele, “Cloning and characterization of the cDNA encoding mouse dipeptidyl peptidase I (cathepsin C)”, Biochim. Biophys. Acta, 273:1351-1267, (1997).

L. Hola-Jamriska, J. F. Tort, J. P. Dalton, S. R. Day, J. Fan, J. Aaskov and P. J. Brindley, “Cathepsin C fromSchistosoma japonicum: cDNA encoding the preproenzyme and its phylogenetic relationships”, Eur. J. Biochem, 255:527-534, (1998).

D. W. Hutchinson and A. Tunnicliffe, “The preparation and properties of immobilised dipeptidyl-aminopeptidase I (cathepsin C)”, Biochim. Biophys. Acta, 916:1-4, (1987).

M. Klemba, I. Gluzman and D. E. Goldberg, “A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation”, J. Biol. Chem, 279:43000-43007, (2004).

J. M. Clair, C. T. Pham, S. A. Villalta, G. H. Caughey and P. J. Wolters, “Mast cell dipeptidyl peptidase I mediates survival from sepsis”, J. Clin. Invest, 113:628-634, (2004).

A. M. Adkison, S. Z. Raptis, D. G. Kelley and C. T. Pham, “Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis”, J. Clin. Invest, 109:363-371, (2002).

J. Bondebjcrg, H. Fugsang and K. R. Valeur, “Novel Smicarbazide-derived inhibitors of human Dipeptidyl peptidase I (hDPPI)”, Bioorg. Med. Chem, 13:4408-4424, (2002).

H. R. Gutmann and J. S. Frutin, “On the Proteolytic Enzymes of Animal Tissues: VIII. An Intracellular Enzyme Related to Chymotrypsin”, Biol. Chem, 174:851-858, (1948).

D. Turk, V. Janjic, I. Stern, M. Podobnik, D. Lamba, S. W. Dahl, C. Lauritzen, J. Pedersen, V. Turk and B. Turk, “Structure of human Dipeptidyl peptidase I (Cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases”, EMBO. J, 20:6570-6582, (2001).

M. Sajida, J. H. McKerrowa, E. Hansella, M. A. Mathieua, K. D. Lucasa, I. Hsieha, D. Greenbauma, M. Bogyob, J. P. Saltera, K. C. Lima, C. Franklina, J. H. Kima and C. R. Caffreya, “Functional expression and characterization of Schistosoma mansoni cathepsin B and itstrans-activation by an endogenous asparaginyl endopeptidase”, Mol. Biochem. Parasitol, 131:65-75, (2003).

E. Kominami, K. Ishido, D. Muno and N. Sato, “The primary structure and tissue distribution of cathepsin C”, Bio. Chem. Hoppe-Seyler, 373:367-373, (1992).

R. Shapiro and B. L. Vallee, “Interaction of human placental ribonuclease with placental ribonuclease inhibitor”, Biochemistry, 30:2246-2255, (1991).

Laine, Dramane, Palovich, Michael, McCleland, Brent, Petitjean, Emilie, Delhom, Isabelle, Xie, Haibo, Deng, Jianghe, Lin, Guoliang, Davis, Roderick, Jolit, Anais, Nevins, Neysa, Zhao, Baoguang, Villa, Jim, Schneck, Jessica, McDevitt, Patrick, Midgett, Robert, Kmett, Casey, Umbrecht, Sandra, Peck, Brian, Davis, A. Bacon, Bettoun and David, “Discovery of Novel Cyanamide-Based Inhibitors of Cathepsin C”, ACS Med. Chem. Lett, 2:2, (2011).

Guay, Daniel, Beaulieu, Christian, Truchon, Jean-Francois, Reddy, T. Jagadeeswar, Bayly, Christopher I., (Zamboni, Robert, Methot, Nathalie, Rubin, Joel, Ethier, Diane, Percival and M. David, “Design and synthesis of dipeptidyl nitriles as potent, selective, and reversible inhibitors of cathepsin C”, Bioorg. Med. Chem. Lett, 20:1463, (2010).

C. M. Kam, M. G. Gotz, G. Koot, M. McGuire, D. Thiele, D. Hudig and C. J. Powers, “Design and evaluation of inhibitors for dipeptidyl peptidase I (Cathepsin C)”, Arch. Biochem. Biophys, 427:123-134, (2004).

Suban, Dejan, Zajc, Tajana, Renko, Miha, Turk, Boris, Turk, Vito, Dolenc and Iztok, “Cathepsin C and plasma glutamate carboxypeptidase secreted from Fischer rat thyroid cells liberate thyroxin from the N-terminus of thyroglobulin”, Biochimie, 94:719-726, (2012).

H. Lindley, “The Specificity of Dipeptidyl Aminopeptidase I (Cathepsin C) and its Use in Peptide Sequence Studies”, Biochem. J, 126:683-688, (1972).

R. Gianetto and C. D. Duve, “Tissue fractionation studies. 4. Comparative study of the binding of acid phosphatase, β-glucuronidase and cathepsin by rat-liver particles”, Biochem. J, 59:433-438, (1955).

M. J. Guire, P. E. Lipsky and D. L Thiele, “Cloning and characterization of the cDNA encoding mouse dipeptidyl peptidase I (cathepsin C)”, Biochim. Biophys. Acta, 1351:267-273, (1997).

L. H. Jamriska, J. F. Tort, J. P. Dalton, S. R. Day, J. Fan, J. Aaskov and P. J. Brindley, “Cathepsin C from Schistosoma japonicum, cDNA encoding the preproenzyme and its phylogenetic relationships”, Eur. J. Biochem, 255:527-534, (1998).

D. W. Hutchinson and A. Tunnicliffe, “The preparation and properties of immobilised dipeptidyl-aminopeptidase I (cathepsin C)”, Biochim. Biophys. Acta, 916:1-4, (1987).

M. Klemba, I. Gluzman and D. E. Goldberg, “A Plasmodium falciparum Dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation”, J. Biol. Chem, 279:43000–43007, (2004).

M. J. McGuire, P. E. Lipsky and D.L. Thiele, “Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I”, J. Biol. Chem, 268:2458-2467, (1993).

A. M. Adkison, S. Z. Raptis, D. G. Kelley and C. T. Pham, “Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis”, J. Clin. Invest, 109:363-71, (2002).

C. T. Pham and T. J. Ley, “Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo”, Proc. Natl. Acad. Sci. USA, 96:8627-32, (1999).

P. J. Wolters, C. T. Pham, D. J. Muilenburg, T. J. Ley and G. H. Caughey, “Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice”, J. Biol. Chem, 276:18551-18556, (2001).

M. J. Guire, P. E. Lipsky and D. L. Thiele, “Purification and characterization of dipeptidyl peptidase I from human spleen”, Arch. Biochem. Biophyx, 295:280-288, (1992).

N. M. Thot, D. Guay, J. Rubin, D. Ethier, K. Ortega, S. Wong, D. Normandin, C. Beaulieu, T.J. Reddy, D. Riendeau and M. D. Perciva, “In Vivo Inhibition of Serine Protease Processing Requires a High Fractional Inhibition of Cathepsin C”, Mol. Pharmacol, 73:1857-1865, (2008).

P. D. Sheth, J. Pedersen, A. F. Walls and A. R. McEuen, “Inhibition of dipeptidyl peptidase I in the human mast cell line HMC-1: blocked activation of tryptase, but not of the predominant chymotryptic activity”, Biochem. Pharmacol, 66:2251-2262, (2003).

P. J. Wolters, C. T. Pham, D. J. Muilenberg, T. J. Ley and G. H. Caughey, “Dipeptidyl Peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice”, Biol. Chem, 276:18551-18556, (2001).

P. S. Hart, Y. Zhang, E. Firatli, C. Uygur, M. Lotfazar, M. D. Michale, J. J. Marks, X. Lu, B. J. Coates, W. K. Seow, R. Marshall, D. Williams, J. B. Reed, J. T. Wright, T. C. Hart, “Identification of cathepsin C mutations in ethnically diverse Papillon-Lefèvre syndrome patients”, Med. Genet, 37:927-932, (2000).

J. M. Clair, C. T. Pham, A. Villalta, G. H. Caughey and P. J. Wolter, “Mast cell dipeptidyl peptidase I mediates survival from sepsis”, J. Clin. Invest, 113:628-634, (2004).

A. Molgaard, J. Arnau, C. Lauritzen, S. Larsen, G. Petersen and J. Pedersen, “The crystal structure of human Dipeptidyl peptidase I (Cathepsin C) in complex with the inhibitor Gly-Phe-CHN2”, Biochem. J, 401:645-650, (2007).

D. L. Thiele, P. E. lipsky and M. J. McGuire, “ U.S. patent”, 602:102, (1997).

G. D. Green and E. J. Shaw, “ Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases”, Biol. Chem, 256:1923-1928, (1981).

S. A. Thompson, P. R. Andrews and R. P. Hanzlik, “Carboxyl-modified Aminoacids and Peptides as Protease Inhibitors”, Med. Chem, 29:104-111, (1986).

J. Bondebjerg, H. Fuglsang, K. R. Valeur, J. Pedersen and L. Naerum, “Dipeptidyl nitriles as human dipeptidyl peptidase I inhibitors”, Bioorg. Med. Chem. Lett, 3614-3617, (2006).

C. M. Kam, M. G. Gotz, G. Koot, M. McGuire, D. Thiele, D. Hudig and J. C. Powers, “Design and Synthesis of Inhibitors for Dipeptidyl Peptidase”, Arch. Biochem. Biophys, 427:123-134, (2004).

H. U. Demuth, U. Heiser and A. Niestroj, WO 03/022871 A2, (2003).

M. Horn, M. Pavlik, L. Doleckova, M. Baudys and M. Mares, “Arginine-based structures are specific inhibitors of cathepsin C. Application of peptide combinatorial libraries”, Eur. J. Biochem, 267:3330-3336, (2000).

A. J. Barrett, A. A. Kembhavi, M. A. Brown, H. Kirschke, C. G. Knight, M. Tamai and K. Hanada, “L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L”, Biochem. J, 201:189-198, (1982).

A. Anastasi, M. A. Brown, A. A. Kembhavi, M. J. Nicklin, C. A. Sayers, D. C. Sunter and A. J. Barrett, “Cystatin, a protein inhibitor of cysteine proteinases: improved purification from egg white, characterization, and detection in chicken serum”, Biochem. J, 211:129-138, (1983).

F. H. Clarke, “How Modern Medicines are Discovered”, Futura, (1973).

W. Sneader, “Drug Prototypes and Their Exploitation”, Wiley, (1996).

M. A. Johnson and G. M. Maggiora, “Concepts and Applications of Molecular Similarity”, John Wiley & Sons, (1990).

H. J. Bohm, A. Flohr and M. Stahl, “Scaffold hopping”, Drug Discov Today: Technologies, 1:3, (2004).

H. Zhao, “Scaffold selection and scaffold hopping in lead generation: a medicinal chemistry perspective”, Drug Discov. Today, 12:3-4, (2007).

P. R. Andrews, “Functional group contributions to drug-receptor interactions”, J. Med. Chem, 27:1648-1657, (1984).

A. C. Zapatero and J. T. Metz, “Ligand efficiency indices as guideposts for drug discovery”, Drug Discov. Today, 10:464-469, (2005).

M. M. Hann and T. I. Oprea, “Pursuing the leadlikeness concept in pharmaceutical research”, Curr. Opin. Chem. Biol, 8:255-263, (2004).

S. J. Teague, “The design of leadlike combinatorial libraries”, Angew. Chem. Int. Ed. Engl, 38:3743-3748, (1999).

G. W. Bemis and M. A. Murcko, “The properties of known drugs. 1. Molecular frameworks”, J. Med. Chem, 39:2887-2893, (1996).

A. Schuffenhauer, “Relationships between molecular complexity, biological Activity, and structural diversity”, J. Chem. Inf. Model, 46:525-535, (2006).

O. V. Buzko, A. C. Bishop and K. M. Shokat, “AutoDock for accurate docking of protein kinase inhibitors”, J. Comput. Aided Mol. Des, 16:113-127, (2002).

D. S. Goodsell, G. M. Morris and A. J. Olson, “Automated Docking of Flexible Ligands: Applications of AutoDock”, J. Mol. Recognit, 9:1-5, (1996).

R. Huey, G. M. Morris, A. J. Olson and D. S. Goodsell, “A semiempirical free energy force field with charge-based desolvation”, J. Comput. Chem, 28:1145-1152, (2007).

B. R. Brooks, C. L. Brooks III, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York and M. Karplus, “The Biomolecular simulation Program”, J. Comp. Chem, 30:1545-1615, (2009).

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, “CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations”, J. Comp. Chem, 4:187-217, (1983).

A. Krammer, P. D. Kirchhoff, X. Jiang, C. M. Venkatachalam and M. Waldman, “LigScore: a novel scoring function for predicting binding affinities”, J. Mol Graph Model, 23:395-407, (2005).

P. A. Kollma, “Free energy calculations: applications to chemical and biochemical phenomena”, Chem. Rev, 93:2395-2417, (1993).

J. Aqvist, V. B. Luzhkov and B. O. Brandsdal, “Ligand binding affinities from MD simulation”, Acc. Chem. Res, 35:358-365,(2002).

H. A. Carlson and W. L. Jorgensen, “An extended linear response method for determining free energies of hydration”, J. Phys. Chem, 99:10667-10673, (1995).

I. Muegge and Y. C. Martin, “A general fast scoring function for protein–ligand interactions: a simplified potential approach”, J. Med. Chem, 42:791-804, (1999).

J. B. Mitchell, R. A. Laskowski, A. Alex and J. M. Thornton, “BLEEP potential of mean force describing, protein–ligand interactions. Part I. Generating potential”, J. Comp. Chem, 20:1165-1176, (1999).

H. Gohlke, M. Hendlich and G. Klebe, “Knowledge-based scoring function to predict protein-ligand interactions”, J. Mol. Biol, 295:337-356, (2000).

H. J. Bohm, “Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs”, J. Comput. Aided Mol. Des, 12:309-323, (1998).

D. K. Gehlhaar, G. M. Verkhivker, P. A. Rejto, C. J. Sherman, D. B. Fogel, L. J. Fogel and S. T. Freer, “Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming”, Chem. Biol. 2:317-324, (1995).

G. M. Verkhivker, D. Bouzida, D. K. Gehlhaar, P. A. Rejto, S. Arthurs, A. B. Colson, S. T. Freer, V. Larson, B. A. Luty, T. Marrone and P. W. Rose, “Deciphering common failures in molecular docking of ligand–protein complexes”, J. Comput. Aided Mol. Des, 14:731-751, (2000).

A. N. Jain, “Scoring noncovalent protein–ligand interactions: a continuous differentiable function tuned to compute binding affinities”, J. Comput. Aided Mol. Des, 10:427-440, (1996).

A. E. Muryshev, D. N. Tarasov, A. V. Butygin, O. Y. Butygina, A. B. Aleksandrov and S. M. Nikitin, “A novel scoring function for molecular docking”, J. Comput. Aided Mol. Des, 17:597-605, (2003).