Computer-aided design of Organophosphorus inhibitors of Urease

M. Padariya, Umesh Kalathiya, L. Berlicki, M. Baginski

Abstract


Based on the structure of the most potential inhibitor diamidophosphate, various novel groups of inhibitors were developed by knowledge-based design approach with covalent carbon-phosphorus or carbon-phosphorus-carbon bond to improve hydrolytic stability to inhibit the microbial ureases. Designed compounds were evaluated with 10 (LigScore1, LigScore2, PLP1, PLP2, JAIN, PMF, PMF04, LUDI_1, LUDI_2 and LUDI_3) different scoring functions implemented in Discovery Studio and conformation analysis by AutoDock package.

Full Text:

PDF

References


B. Zerner, “Recent advances in the chemistry of an old enzyme, urease”, Bioorg. Chem, 19:116-131, (1991).

N. E. Dixon, C. Gazzola, R. L. Blakeley and B. Zerner, “Jack bean urease (EC 3.5..1.5) a metalloenzyme. A simple biological role for nickel? ” J. Am. Chem. Soc, 97:4131-4133, (1975).

J. B. Sumner, “The isolation and crystallization of the enzyme urease”, J. Biol. Chem, 69: 435-441, (1926).

L. Alagna, S. S. Hasnain, B. Piggott and D. J. Williams, “The nickel ion environment in jack bean urease”, Biochem. J., 220:591-595, (1984).

H. L. Mobley, M. D. Island and R. P. Hausinger, “Molecular biology of microbial ureases”, Microbiol. Rev, 59:451-480, (1995).

H. L. T. Mobley and R. P. Hausinger, Microbiol. Rev, 53:85-108, (1989).

R. P. Hausinger, “In Biochemistry of Nickel”, Plenum Press New York, (1993).

W. Li, M. X. Gao and D. D. Sheng, “Synthesis, temperature controlled structures and polyphenol oxidase activities of dinuclear manganese(II) complexes with N,N,N ',N '-tetrakis(2 '-benzimidazolylmethyl)-1,4-diethylene amino glycol ether”, inorganica. chimica. acta, 387:181-185, (2012).

A. Rauf, F. Ahmed and A. M. Qureshi, “Synthesis and Urease Inhibition Studies of Barbituric and Thiobarbituric Acid Derived Sulphonamides”, J. Chin. Chem. Soc, 58:528-537, (2011).

B. Zambelli, N. Cremades and P. Neyroz, “Insights in the (un)structural organization of Bacillus pasteurii UreG, an intrinsically disordered GTPase enzyme”, Mol. Biosyst, 8:220-228, (2012).

E. Jabri, M. B. Carr, R. P. Hausinger and P. A. Karplus, Science, 268:998–1004, (1995).

R. P. Benjamin, M. R. Bill and A. E. Roitberg, “Wide-Open Flaps Are Key to Urease Activity”, J. Am. Chem. Soc, 134:9934-9937, (2012).

R. Wang, Y. Lu and S. Wang, “Comparative Evaluation of 11 Scoring Functions for Molecular Docking”, J. Med. Chem, 46:2287-2303, (2003).

H. J. Bohm, “The Development of a Simple Empirical Scoring Function to Estimate the Binding Constant for a Protein-Ligand Complex of Known Three-Dimensional Structure”, J. Comput.-Aided Mol. Des, 8:243-256, (1994).

Z. A. Ansari, M. Haque and S. H. Kee, “Urea Sensing Properties of Cu-Doped Titanate Nanostructures”, Adv. Sci. Lett, 4:3451-3457, (2011).

A. Balasubramanian and K. Ponuraj, Acta Crystallogr, F64:662-664, (2008).

B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York and M. Karplus, “The Biomolecular simulation Program”, J. Comp. Chem, 30:1545-1615, (2009).

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, “CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations”, J. Comp. Chem, 4:187-217, (1983).

R. Huey, G. M. Morris, A. J. Olson and D. S. Goodsell, “A semiempirical free energy force field with charge-based desolvation”, J. Comput. Chem, 28:1145- 1152, (2007).

A. Karmmer, P. D. Kirchhoff, X. Jiang, C. M. Venkatachalam and M. Waldman, “LigScore: a novel scoring function for predicting binding affinities”, J. Mol. Graph. Model, 23:395-407, (2005).

D. K. Gehlhaar, G. M. Verkhivker, P. A. Rejto, C. J. Sherman and D. B. Fogel, “Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming”, Chemistry & Biology, 2:317-324, (1995).

A. N. Jain, “Scoring non covalent proteinligand interactions: A continuous differentiable function tuned to compute binding affinities”, J. Comput. Aided. Mol. Design, 10:427-440, (1996).

I. Muegge, “PMF scoring revisited”, J. Med. Chem, 49:5895-5902, (2006).

H. J. Bohm, “Prediction of Binding Constants of Protein Ligands: A Fast Method for the Prioritization of Hits Obtained from De Novo Design or 3D Database Search Programs”, J. Comput.-Aided Mol. Des, 12:309-323, (1998).

H. J. Bohm, “The Development of a Simple Empirical Scoring Function to Estimate the Binding Constant for a Protein-Ligand Complex of Known Three-Dimensional Structure”, J. Comput.-Aided Mol. Des, 8:243-256, (1994).

R. Wang, Y. Lu and S. Wang, “Comparative Evaluation of 11 Scoring Functions for Molecular Docking”, J. Med. Chem, 46:2287-2303, (2003).

J. Koska, V. Z. Spassov, A. J. Maynard, L. Yan, N. Austin, P. K. Flook and C. M. Venkatachalam, “Fully Automated Molecular Mechanics Based Induced Fit Protein−Ligand Docking Method”, J. Chem. Inf. Model, 48:1965-1973, (2008).

I. Muegge and Y. C. Martin, “A general and fast scoring function for protein-ligand interactions: A simplified potential approach”, J. Med. Chem, 42:791-804, (1999).

G. M. Morris, D. S. Goodsell, M. E. Pique, W. L. Lindstrom, R. Huey, S. Forli, W. E. Hart, S. Halliday, R. Belew and A. J. Olson, “Automated Docking of Flexible Ligands to Flexible Receptors”, user guide AutoDock, (2010).

D. S. Goodsell, G. M. Morris and A. J. Olson, “Automated Docking of Flexible Ligands: Applications of autodock”, J. Mol. Recognit, 9:1-5, (1996).

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell and A. J. Olson, “Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility”, J. Comput. Chem, 16:2785-91, (2009).

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov and P. E. Bourne, “The Protein Data Bank”, Nucleic Acids Res, 28:235-42, (2000).

R. Huey, D. S. Goodsell, G. M. Morris and A. J. Olson, “Grid-based hydrogen bond potentials with improved directionality”, Lett. Drug. Des. Discov, 1:178-183, (2004).

G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew and A. J. Olson, “Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function”, Comput. Chem, 19:1639-1662, (1998).

D. K. Gehlhaar, D. Bouzida and P. A. Rejto, “In Rational Drug Design: Novel Methodology and Practical Applications”, ACS-Washington, 292-311, (1999).

H. J. Bohm, A. Flohr and M. Stahl, Drug Discov. Today. Technol, 1:217-224, (2004).

H. Zhao, Drug Discov. Today, 12:149-155, (2007).

P. Ertl, S. Jelfs, J. Muhlbacher, A. Schuffenhauer and P. Selzer, J. Med. Chem, 49:4568-4573, (2006).

“Glide”, Version 3.5 Schrodinger, L.L.C., New York, (2006).

G. Jones, P. Willett and R. C. Glen, J. Mol. Biol, 245:43-53, (1995).

“Cerius2”, Version 4.11 Accelrys Inc, San Diego, CA, USA, (2007).

“Catalyst”, Version 4.11Accelrys Inc, San Diego, CA, USA, (2007).

Z. Amtul, A. U. Rahman, R. A. Siddiqui and M. I. Choudhary, “Chemistry and mechanism of urease inhibition”, Curr. Med. Chem, 14:1323-1348, (2002).

S. Vassiliou, A. Grabowiecka, P. Kosikowska, A. Yiotakis, P. Kafarski and Ł. Berlicki, “Design, Synthesis,and Evaluation of Novel Organophosphorus Inhibitors of Bacterial Ureases”, J. Med. Chem, 18:5736-5744, (2008).