Combined gene expression analysis in HIV Associated Dementia, Alzheimer’s disease and Parkinson’s disease- An in-silico approach

Sneha Dokhale, Yash Shah, Naveen P


Human immunodeficiency virus (HIV) Type 1 infection predominantly affects the immune system. Nevertheless, scientific studies have proven its association with the Central Nervous system (CNS) causing several neurological complications leading to HIV Associated Dementia (HAD). HAD is characterized by a progressive, disabling decline in essential CNS functions such as cognition, motor control and behavior. These are the general characteristics of the most common Neuro degenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The genetics of AD and PD is widely studied and clinical studies have shown cohesion in the pathology of HAD, AD and PD. Analysing the concurrent expression patterns of large number of genes amongst these related diseases will aid in establishing correlations between the genes and their functions.

We have analysed the gene expression datasets of HAD, AD and PD from GEO database to determine the overlapping genes and transcription factors involved. The datasets were normalized using R-Bioconductor, and statistical analysis was performed to identify the significant genes using limma and related packages in R. Although substantial amount of common proteins among HAD and other Neuro degenerative diseases have been previously reported, our findings can help in expanding the pool of target genes and further enhancing the knowledge about the convergent pathways among HAD, AD and PD. These common markers identified will provide insights into parallel pathways of disease mechanisms and further assist in the understanding of progression of HAD pathogenesis.


HIV Associated Dementia, HAD, Neurodegenerative diseases, Parkinson’s disease, Alzheimer’s disease, Gene Expression, Microarray

Full Text:



Cysique LA, Maruff P, Brew BJ (2004) Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus–infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: A combined study of two cohorts Clinical Report. Journal of Neurovirology, 10(6), 350-357. doi:10.1080/13550280490521078

Dore GJ, McDonald A, Li Y, Kaldor JM, Brew BJ (2003) Marked improvement in survival following AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS, 17(10), 1539-1545. doi:10.1097/00002030-200307040-00015

Masliah E, DeTeresa RM, Mallory ME, Hansen LA (2000) Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS, 14(1), 69-74. doi:10.1097/00002030-200001070-00008

Bell JE (1998) The neuropathology of adult HIV infection. Rev Neurol (Paris), 154(12). Retrieved from RNE-01-1999-154-12-0000-0000-101019-ART70

Bissel SJ, Wang G, Bonneh-Barkay D, Starkey A, Trichel AM, Murphey-Corb M, Wiley CA (2008) Systemic and Brain Macrophage Infections in Relation to the Development of Simian Immunodeficiency Virus Encephalitis. Journal of Virology, 82(10), 5031-5042. doi:10.1128/jvi.02069-07

Kaufmann WE (1992) Cerebrocortical changes in AIDS. Laboratory investigation; a journal of technical methods and pathology, 66(3), 261 - 4.

De Vries HE, Kuiper J, De Boer AJ, Van Berkel TJ, Breimer DD (1997) The blood–brain barrier in neuroinflammatory diseases. Pharmacological Reviews, 49(2), 143 - 156. Retrieved from

Minagar A, Shapshak P, Duran EM, Kablinger AS, Alexander JS, Kelley RE, Kazic T (2004) HIV-associated dementia, Alzheimer's disease, multiple sclerosis, and schizophrenia: gene expression review. Journal of the Neurological Sciences, 224(1-2), 3-17. doi:10.1016/j.jns.2004.06.007

Galey D, Becker K, Haughey N, Kalehua A, Taub D, Woodward J, Nath A (2003) Differential Transcriptional Regulation by Human Immunodeficiency Virus Type 1 and gp120 in Human Astrocytes. Journal of Neurovirology, 9(3), 358-371. doi:10.1080/13550280390201119

Koethe JR, Dee K, Bian A, Shintani A, Turner M, Bebawy S, Hulgan T (2013) Circulating Interleukin-6, Soluble CD14, and Other Inflammation Biomarker Levels Differ Between Obese and Nonobese HIV-Infected Adults on Antiretroviral Therapy. AIDS Research and Human Retroviruses, 29(7), 1019-1025. doi:10.1089/aid.2013.0016

Giri MS, Nebozhyn M, Showe L, Montaner LJ (2006) Microarray data on gene modulation by HIV-1 in immune cells: 2000-2006. Journal of Leukocyte Biology, 80(5), 1031-1043. doi:10.1189/jlb.0306157

Gelman BB, Chen T, Lisinicchia JG, Soukup VM, Carmical JR, & Starkey JM (2012) The National NeuroAIDS Tissue Consortium Brain Gene Array: Two Types of HIV-Associated Neurocognitive Impairment. PLoS ONE, 7(9), e46178. doi:10.1371/journal.pone.0046178

Soto C, Estrada LD (2008) Protein Misfolding and Neurodegeneration. Archives of Neurology, 65(2). doi:10.1001/archneurol.2007.56

Patil S, Seetharaman B, Shapshak P (2017) Amyloidogenic Pattern Prediction of HIV-1 Proteins. Global Virology II - HIV and NeuroAIDS, 823-895. doi:10.1007/978-1-4939- 290-6_33

Padmadas N, Panda PK, Durairaj S (2016) Binding Patterns Associated Aß-HSP60 p458 Conjugate to HLA-DR-DRB Allele of Human in Alzheimer’s Disease: An In Silico Approach. Interdisciplinary Sciences: Computational Life Sciences. doi:10.1007/s12539-016-0170-y

Levine AJ, Miller JA, Shapshak P, Gelman B, Singer EJ, Hinkin CH, Horvath S (2013) Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer’s disease. BMC Medical Genomics, 6(1). doi:10.1186/1755-8794-6-4

Borjabad A, Volsky DJ (2012) Common Transcriptional Signatures in Brain Tissue from Patients with HIV-Associated Neurocognitive Disorders, Alzheimer ’s disease, and Multiple Sclerosis. Journal of Neuroimmune Pharmacology, 7(4), 914-926. doi:10.1007/s11481-012-9409-5

Gorman AM (2008) Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. Journal of Cellular and Molecular Medicine, 12(6a), 2263-2280. doi:10.1111/j.1582-4934.2008.00402.x

Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nature Medicine, 10(7), S10-S17. doi:10.1038/nm1066

Mayeux R (2003) Epidemiology of Neurodegeneration. Annual Review of Neuroscience, 26(1), 81-104. doi:10.1146/annurev.neuro.26.043002.094919

Barrett T, Edgar R (2006) Gene Expression Omnibus: Microarray Data Storage, Submission, Retrieval, and Analysis. Methods in Enzymology, 352-369. doi:10.1016/s0076-6879(06)11019-8

Quackenbush J (2002) Microarray data normalization and transformation. Nature Genetics, 32(Supp), 496-501. doi:10.1038/ng1032

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2), 249-264. doi:10.1093/biostatistics/4.2.249

Hornik K (2015, November 26) R FAQ. Retrieved from

Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S (Eds.) (2005) Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer-Verlag New York.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47-e47. doi:10.1093/nar/gkv007

Procaccini C, Santopaolo M, Faicchia D, Colamatteo A, Formisano L, De Candia P, … Matarese G (2016) Role of metabolism in neurodegenerative disorders. Metabolism, 65(9), 1376-1390. doi:10.1016/j.metabol.2016.05.018

Kanehisa M (1996) Toward pathway engineering: a new database of genetic and molecular pathways. Science & Technology Japan, 59, 34 - 38.

Frigge M, Hoaglin DC, Iglewicz B (1989) Some Implementations of the Boxplot. The American Statistician, 43(1), 50. doi:10.2307/2685173

Stygelbout V, Leroy K, Pouillon V, D'Amico E, Erneux C, Schurmans S, & Brion J (2011) Overexpression of inositol 1,4,5-trisphosphate 3-kinase B (Itpkb) in neurons of APP mice leads to an increase of Amyloid Beta production. Alzheimer's & Dementia, 7(4), S528-S529. doi:10.1016/j.jalz.2011.05.1483

Salta E, Sierksma A, Vanden Eynden E, De Strooper B (2016) miR‐132 loss de‐represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer's brain. EMBO Molecular Medicine, 8(9), 1005-1018. doi:10.15252/emmm.201606520

Hortsch M (1996) The L1 Family of Neural Cell Adhesion Molecules: Old Proteins Performing New Tricks. Neuron, 17(4), 587-593. doi:10.1016/s0896-6273(00)80192-0

Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, Keller A (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biology, 14(7), R78. doi:10.1186/gb-2013-14-7-r78

Lee S, Shang Y, Redmond S, Urisman A, Tang A, Li K, Huang E (2016) Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis. Neuron, 91(1), 41-55. doi:10.1016/j.neuron.2016.05.021

Kong W, Mou X, Deng J, Di B, Zhong R, Wang S, Zeng W (2017) Differences of immune disorders between Alzheimer’s disease and breast cancer based on transcriptional regulation. PLOS ONE, 12(7), e0180337. doi:10.1371/journal.pone.0180337

Desplats PA, Lambert JR, Thomas EA (2008) Functional roles for the striatal-enriched transcription factor, Bcl11b, in the control of striatal gene expression and transcriptional dysregulation in Huntington's disease. Neurobiology of Disease, 31(3), 298-308. doi:10.1016/j.nbd.2008.05.005

Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, Masliah E (2013) Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology, 80(15), 1415-1423. doi:10.1212/wnl.0b013e31828c2e9e

Shapshak P, Rodriguez HE, Kayathri R, Levine A, Chiappelli F, Minagar A (2008) Alzheimer's disease and HIV associated dementia related genes: I. location and function. Bioinformation, 2(8), 348-357. doi:10.6026/97320630002348